Fully implicit Runge-Kutta (IRK) methods have many desirable accuracy and stability properties as time integration schemes, but are rarely used in practice with large-scale numerical PDEs because of the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic framework for solving the nonlinear equations that arise from IRK methods (and discontinuous Galerkin discretizations in time) applied to nonlinear numerical PDEs, including PDEs with algebraic constraints. Several new linearizations of the nonlinear IRK equations are developed, offering faster and more robust convergence than the often-considered simplified Newton, as well as an effective preconditioner for the true Jacobian if exact Newton iterations are desired. Inverting these linearizations requires solving a set of block 2x2 systems. Under quite general assumptions, it is proven that the preconditioned 2x2 operator has a condition number of ~O(1), independent of the spatial discretization, and with only weak dependence on the number of stages or integration accuracy. Moreover, the new method is built using the same preconditioners needed for backward Euler-type time stepping schemes, so can be readily added to existing codes. The new methods are applied to several challenging fluid flow problems, including the compressible Euler and Navier Stokes equations, and the vorticity-streamfunction formulation of the incompressible Euler and Navier Stokes equations. Up to 10th-order accuracy is demonstrated using Gauss IRK, while in all cases 4th-order Gauss IRK requires roughly half the number of preconditioner applications as required by standard SDIRK methods.


翻译:完全隐含的 Runge- Kutta ( IRK) 方法随着时间整合计划而具有许多可取的准确性和稳定性,但很少在大规模数字 PDE 中实际使用,因为很难解决阶段方程式。 本文引入了一个理论和算法框架, 以解决由IRK 方法( 和不连续的 Galerkin 分解) 产生的非线性方程式, 包括具有代数限制的 PDE 。 正在开发一些非线性 IRK 方程式的新线性, 提供比经常考虑的简化牛顿( Newton) 准确性更快和更加强的趋同性, 并且是一个有效的先决条件, 如果需要精确的 牛顿 迭代方方方程式。 翻转这些线性方程式需要解决一组 2x2 系统。 在相当一般的假设下, 2x2 操作员的条件是 ~ O(1), 独立于空间分解, 并且对各个阶段或整合精度的依赖度只有弱。 此外, 新的方法是使用相同的直立的 Etonrequestrequestoral 的 Erder 。 在 Eurder 的 Ermal 中, 中, 需要 的轨中, 需要采用一些 的直流的直流的直流的螺流 和直流的直方程式, 的平流的平流的平序的平序的平序的平序式的平序的平序的平序式的平序的平序式的平序式的平序式的平序式的平序式的平序式的平序法 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员