Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the recently proposed L2-type formula [A.~A.~Alikhanov, C.~Huang, Appl.~Math.~Comput.~(2021) 126545]. Then, we prove the stability and the convergence of this scheme. Based on such the numerical scheme, a L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed according to the special structure of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order $\alpha \in (0,0.3624)$. Numerical results are reported to show the efficiency of our method.
翻译:一些研究人员为调查扩散和分序动态之间的关系而开发了时间-空间分块布洛赫-托雷方程式。 在本文中,我们首先通过使用最近提议的L2型公式[A. ~Alikhanov, C~Huang, Appl. ~Math.~Comput.~(2021) 126.545] 来为这个方程式提出第二阶方案。然后,我们证明这个方程式的稳定性和趋同。根据这样的数字公式,将产生一个L2型全自动系统。为了以平行方式解决这个系统,我们根据该系统的特殊结构设计了一种双边先决条件技术。我们理论上表明,前提条件矩阵的条件数目在时间分数的常数中统一受一个常数的约束,即 $\alpha \ in (0,0..3624) 。我们报告的数值结果显示我们方法的效率。