This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr\"{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr\"{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
翻译:本文建议并分析一个超弱的局部不连续加勒金方案,用于单维非线性双声波双声波 Schr\"{o}dinger 等式。我们通过采用二级空间衍生物作为辅助变量而不是常规的一级衍生物来发展本地非线性Galerkin方法的范式。提议的半分解方案保留了一些与物理相关的特性,如保护质量和汉密尔顿尼保藏,同时保持了目标非线性双声波 Schr\{o}dinger等式的稳定性。我们还得出了衡量解决方案和辅助变量的最佳方案估计值$L2$-error。一些数字研究显示并支持了我们的理论结论。