This work proposes a new stabilized $P_1\times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressure-robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity is shown. For the Navier--Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated for competitiveness on several benchmark problems in 2 and 3 dimensional space.


翻译:这项工作提出了一个新的稳定的 $P_ 1\time P_ 0$ 有限元素方法, 用于解决无法压缩的导航- Stokes 方程式。 数字方法基于一个使用静电压缩面泡的Bernardi- Raugel 元素, 以静态压缩面泡为基数, 是小型粘度系统中的压力- 硬质。 对于斯托克斯 问题, 显示一个与运动相对立性一致的错误估计。 对于纳维- Stokes 方程式, 非线性对流术语使用边缘平均有限元素法分离。 与经典方法相比, 拟议的方法不需要调整参数, 并被验证为在 2 和 3 维空间的若干基准问题上的竞争力 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员