We propose a clustering procedure to group K populations into subgroups with the same dependence structure. The method is adapted to paired population and can be used with panel data. It relies on the differences between orthogonal projection coefficients of the K density copulas estimated from the K populations. Each cluster is then constituted by populations having significantly similar dependence structures. A recent test statistic from Ngounou-Bakam and Pommeret (2022) is used to construct automatically such clusters. The procedure is data driven and depends on the asymptotic level of the test. We illustrate our clustering algorithm via numerical studies and through two real datasets: a panel of financial datasets and insurance dataset of losses and allocated loss adjustment expense.
翻译:我们提出将K组人口分组为具有相同依赖结构的分组的程序,该方法适合配对人口,并可用小组数据加以使用,该方法取决于K组人口估计的K密度千叶的正数预测系数之间的差异,然后每个组由具有相当相似依赖结构的人口组成,最近Ngounou-Bakam和Pommeret(2022年)的测试统计数据被用来自动构建这样的分组。该程序是数据驱动的,取决于测试的无症状水平。我们通过数字研究和两个真实数据集来说明我们的组合算法:一个财务数据集小组和损失和分配的损失调整费用保险数据集。