Purpose: The development of metaheuristic algorithms has increased by researchers to use them extensively in the field of business, science, and engineering. One of the common metaheuristic optimization algorithms is called Grey Wolf Optimization (GWO). The algorithm works based on imitation of the wolves' searching and the process of attacking grey wolves. The main purpose of this paper to overcome the GWO problem which is trapping into local optima. Design or Methodology or Approach: In this paper, the K-means clustering algorithm is used to enhance the performance of the original Grey Wolf Optimization by dividing the population into different parts. The proposed algorithm is called K-means clustering Grey Wolf Optimization (KMGWO). Findings: Results illustrate the efficiency of KMGWO is superior to GWO. To evaluate the performance of the KMGWO, KMGWO applied to solve 10 CEC2019 benchmark test functions. Results prove that KMGWO is better compared to GWO. KMGWO is also compared to Cat Swarm Optimization (CSO), Whale Optimization Algorithm-Bat Algorithm (WOA-BAT), and WOA, so, KMGWO achieves the first rank in terms of performance. Statistical results proved that KMGWO achieved a higher significant value compared to the compared algorithms. Also, the KMGWO is used to solve a pressure vessel design problem and it has outperformed results. Originality/value: Results prove that KMGWO is superior to GWO. KMGWO is also compared to cat swarm optimization (CSO), whale optimization algorithm-bat algorithm (WOA-BAT), WOA, and GWO so KMGWO achieved the first rank in terms of performance. Also, the KMGWO is used to solve a classical engineering problem and it is superior
翻译:目的: 研究者增加了光学算法的发展,以便在商业、科学和工程领域广泛使用光学算法。 常见的光学优化算法之一称为灰狼最佳化(GWO)。 基于模仿狼的搜索和攻击灰狼过程的算法工作。 本文的主要目的是克服GWO问题, 将它困在本地的选法中。 设计或方法或方法 : 在本文中, K手段组合算法被用来通过将人口分为不同部分来提高原灰狼最佳化的性能。 拟议的算法称为K手段优化算法, 称为灰狼最佳化。 结果: KMGWO的效率高于GWO。 为了评估KMWO的绩效, KMGWO应用了10 CEC2019基准测试功能。 结果证明KMGWO的问题比GWO更好。 KMGWO也比C OwO O(COOO)、 WIOOOOOOVI)、 WIOOOOOOOOOOI、OOOOOOOOOIGOD、OOOIGOUT、KOIGOILOOOD、KOIGODOOOOOD、KOIL、KOUD、KOOOOD 也证明了SLOOOD、KOD、KOIGOODAOOOD、KODAOOOD、KOD、KOD、KOD、KOD、KOD、KOD、KOD、KWOD、KOD、KOD、KOD、KOD、KWOD、KOD、KOD、KOD、KODAVOD、KOD、KOD、KOD、KOD、KOD、KWOD、KOD、KWOD、KWOD、KOD、KWOD、KWOD、KA、KA、K、KA、KA、K、KAVOD、KA、KA、KOA、KOAVOA、KA、KOD、KOD、KOD、K