Multi-label text classification (MLTC) is one of the key tasks in natural language processing. It aims to assign multiple target labels to one document. Due to the uneven popularity of labels, the number of documents per label follows a long-tailed distribution in most cases. It is much more challenging to learn classifiers for data-scarce tail labels than for data-rich head labels. The main reason is that head labels usually have sufficient information, e.g., a large intra-class diversity, while tail labels do not. In response, we propose a Pairwise Instance Relation Augmentation Network (PIRAN) to augment tailed-label documents for balancing tail labels and head labels. PIRAN consists of a relation collector and an instance generator. The former aims to extract the document pairwise relations from head labels. Taking these relations as perturbations, the latter tries to generate new document instances in high-level feature space around the limited given tailed-label instances. Meanwhile, two regularizers (diversity and consistency) are designed to constrain the generation process. The consistency-regularizer encourages the variance of tail labels to be close to head labels and further balances the whole datasets. And diversity-regularizer makes sure the generated instances have diversity and avoids generating redundant instances. Extensive experimental results on three benchmark datasets demonstrate that PIRAN consistently outperforms the SOTA methods, and dramatically improves the performance of tail labels.


翻译:多标签文本分类(MLTC)是自然语言处理中的关键任务之一。 它的目的是为一份文档指定多重目标标签。 由于标签的普及程度不均, 每个标签的文档数量随长尾标签的分布而变化。 在多数情况下, 学习数据偏差尾尾标签的分类师比学习数据丰富头标签更具挑战性。 主要原因是头标签通常有足够的信息, 例如, 大型类内多样性, 而尾标签则没有。 作为回应, 我们提议建立一个 Pairwith Incentral Relation Againation 网络( PIRAN) 来增加尾标签文件, 以平衡尾标签和头标签。 PIRAN 包含一个关系收藏器和一个实例生成器。 前者的目的是从头标签中提取文档的配对关系, 而后者则试图在有限的尾标签中生成新的高级特征空间中生成新的文件实例。 同时, 有两个调( 多样性和一致性) 旨在限制生成生成进程尾标签的尾标签 。 一致性- 定期修正性标签会使尾标签的常规性结果更加接近。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员