Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
翻译:神经辐射场( Neoral Radiance Fields) 展示了惊人的能力,能够从新观点中合成 3D 场景的图像。 但是,它们依赖基于射线行进的、与广泛部署的图形硬件能力不匹配的专用量测算算法。 本文采用了一个新的 NeRF 表示法, 其基础是基于素描多边形, 能够有效地与标准造影管道合成新图像。 NeRF 代表了一组多边形, 代表了二进制的对立面和特性矢量的纹理。 多边带的传统的外观和 z-buffer 生成了每个像素的特征图像, 由一个小型的、 视向型的 MLP 来解释, 以生成最后的像素颜色 。 这种方法使 NRFs 能够与传统的多边射管一起制作, 提供大规模像素级平行, 并在包括移动电话在内的大量计图理平台上实现互动框架率 。