This paper presents ModelGuard, a sampling-based approach to runtime model validation for Lipschitz-continuous models. Although techniques exist for the validation of many classes of models the majority of these methods cannot be applied to the whole of Lipschitz-continuous models, which includes neural network models. Additionally, existing techniques generally consider only white-box models. By taking a sampling-based approach, we can address black-box models, represented only by an input-output relationship and a Lipschitz constant. We show that by randomly sampling from a parameter space and evaluating the model, it is possible to guarantee the correctness of traces labeled consistent and provide a confidence on the correctness of traces labeled inconsistent. We evaluate the applicability and scalability of ModelGuard in three case studies, including a physical platform.
翻译:本文介绍了MedelGuard,这是对Lipschitz连续模型运行时间进行模拟验证的一种基于抽样的方法,尽管存在验证许多类型的模型的技术,但大多数这些方法不能适用于整个Lipschitz连续模型,其中包括神经网络模型;此外,现有技术一般只考虑白色箱模型;通过采用基于抽样的方法,我们只能处理黑箱模型,只能通过输入-输出关系和Lipschitz恒定体来表示;我们通过从参数空间随机取样和评价模型,可以保证标签标签一致的痕迹的正确性,并对标签不一致的痕迹的正确性提供信心;我们评估了模型Guard在三个案例研究中的适用性和可扩展性,包括一个物理平台。