Assessing an AI agent that can converse in human language and understand visual content is challenging. Generation metrics, such as BLEU scores favor correct syntax over semantics. Hence a discriminative approach is often used, where an agent ranks a set of candidate options. The mean reciprocal rank (MRR) metric evaluates the model performance by taking into account the rank of a single human-derived answer. This approach, however, raises a new challenge: the ambiguity and synonymy of answers, for instance, semantic equivalence (e.g., `yeah' and `yes'). To address this, the normalized discounted cumulative gain (NDCG) metric has been used to capture the relevance of all the correct answers via dense annotations. However, the NDCG metric favors the usually applicable uncertain answers such as `I don't know. Crafting a model that excels on both MRR and NDCG metrics is challenging. Ideally, an AI agent should answer a human-like reply and validate the correctness of any answer. To address this issue, we describe a two-step non-parametric ranking approach that can merge strong MRR and NDCG models. Using our approach, we manage to keep most MRR state-of-the-art performance (70.41% vs. 71.24%) and the NDCG state-of-the-art performance (72.16% vs. 75.35%). Moreover, our approach won the recent Visual Dialog 2020 challenge. Source code is available at https://github.com/idansc/mrr-ndcg.


翻译:评估一个能够以人类语言进行交流并理解视觉内容的AI 代理机构是具有挑战性的。 代际指标, 如 BLEU 评分偏重正确的语法而不是语义学。 因此, 常常使用一种歧视性的方法, 一种代理机构排行一套候选选项。 平均对等等级( MRR) 衡量标准通过考虑单一人类答案的等级来评估模型的性能。 但是, 这种方法提出了新的挑战: 答案的模糊性和同义性, 例如语义等同性( 例如, `ye' 和“ yes ” ) 。 为了解决这个问题, 通常使用一种常规的折现累积收益( NDCG) 衡量标准来通过密集的描述所有正确答案的相关性。 然而, NDCGGG 衡量标准赞成通常适用的不确定的答案, 如“ 我不知道” 。 构建一个既优于 mRC 也优于 NDC 度的模型。 理想的情况是, AI 一种像人一样的解答方法, 并验证任何答案的正确性。 为了解决这个问题, 我们描述了最近一步的NCRD( 20 ) 最接近的不差的成绩排序方法。

0
下载
关闭预览

相关内容

达摩院基于元学习的对话系统
专知会员服务
24+阅读 · 2021年1月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
Top
微信扫码咨询专知VIP会员