Bipartite networks are a natural representation of the interactions between entities from two different types. The organization (or topology) of such networks gives insight to understand the systems they describe as a whole. Here, we rely on motifs which provide a meso-scale description of the topology. Moreover, we consider the bipartite expected degree distribution (B-EDD) model which accounts for both the density of the network and possible imbalances between the degrees of the nodes. Under the B-EDD model, we prove the asymptotic normality of the count of any given motif, considering sparsity conditions. We also provide close-form expressions for the mean and the variance of this count. This allows to avoid computationally prohibitive resampling procedures. Based on these results, we define a goodness-of-fit test for the B-EDD model and propose a family of tests for network comparisons. We assess the asymptotic normality of the test statistics and the power of the proposed tests on synthetic experiments and illustrate their use on ecological data sets.
翻译:双方网络是两种不同类型实体之间相互作用的自然代表。 这种网络的组织(或地形学)提供了洞察力来理解它们所描述的整个系统。 这里, 我们依靠提供对地形学的中尺度描述的元素。 此外, 我们考虑双方预期程度分布模型( B- EDDD), 该模型既考虑到网络密度,又考虑到节点度之间的可能不平衡。 在B- EDDD模型下, 我们证明任何给定的元素的计数均无规律性, 同时考虑到宽度条件。 我们还为这种计数的平均值和差异提供了近形表达方式。 这样可以避免计算上令人望的重现程序。 基于这些结果, 我们定义了双方预期的温度分布模型, 并提出网络比较的一组测试。 我们评估了测试统计数据的零度正常性以及拟议合成实验的强度, 并说明了其在生态数据集中的使用情况 。