We consider the community detection problem in a sparse $q$-uniform hypergraph $G$, assuming that $G$ is generated according to the Hypergraph Stochastic Block Model (HSBM). We prove that a spectral method based on the non-backtracking operator for hypergraphs works with high probability down to the generalized Kesten-Stigum detection threshold conjectured by Angelini et al. (2015). We characterize the spectrum of the non-backtracking operator for the sparse HSBM and provide an efficient dimension reduction procedure using the Ihara-Bass formula for hypergraphs. As a result, community detection for the sparse HSBM on $n$ vertices can be reduced to an eigenvector problem of a $2n\times 2n$ non-normal matrix constructed from the adjacency matrix and the degree matrix of the hypergraph. To the best of our knowledge, this is the first provable and efficient spectral algorithm that achieves the conjectured threshold for HSBMs with $r$ blocks generated according to a general symmetric probability tensor.
翻译:我们用一个稀疏的美元-单体高光速高光计(GG)来考虑社区探测问题,假设根据超光速碎块模型(HSBM)生成了$G美元。我们证明,基于高光谱非回溯跟踪操作器的光谱方法的概率很高,直到由Angelini等人(2015年)预测的通用Kesten-Stigum检测阈值为Kesten-Stigum检测阈值。我们根据我们所知,这是为稀散的HSBM提供非回溯跟踪操作器的频谱,并使用Ihara-Bass高光谱公式提供高效的维度削减程序。因此,对以美元为顶部的稀释 HSBMs 的稀散 HSBM 光谱仪的社区检测可以降低为2n/timetm2nnn的非正常矩阵问题。根据相近光谱矩阵和高光度矩阵构建。据我们所知,这是第一个可探测和有效的光谱算算算出HSBMs(HSBM)的预测阈值区块的预测值,其生成为1美元,一般的光度概率为10。