项目名称: 岩体多裂隙扩展的连续-非连续分析方法
项目编号: No.11202223
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 孙冠华
作者单位: 中国科学院武汉岩土力学研究所
项目金额: 26万元
中文摘要: 研究岩体中多裂隙萌生、扩展及贯通的演化过程对于揭示岩体的变形规律、破坏机理及评价岩土工程的安全可靠性具有十分重要的意义。 以有限元为代表的连续性方法和以离散元为代表的非连续方法都有自己的优势,但二者在分析由连续到非连续的破坏过程时还存在困难。以扩展有限元为代表的分析方法在处理裂纹扩展方面上已取得一定进展,但仍有一些关键问题亟待解决,如网格依赖性、多裂隙自然扩展的模拟、以及计算效率低等问题。 本项研究在数值流形法框架内引入离散元法来处理多裂隙扩展,将流形元的网格无关性和Munjiza接触处理的实效性结合起来,通过块体系统的拓扑映射提高接触检测的效率,发展从连续到非连续演化过程的分析方法。新方法能高效模拟多裂隙的自然扩展,也能克服同类方法中的网格依赖性。最后,将研究成果用于岩质边坡失稳破坏的动态模拟。
中文关键词: 流形元法;连续-非连续;多裂隙;离散元法;岩体
英文摘要: The evolution of initiation, propagation and coalescence of multiple fissures in rock mass is vital to understanding the deformation rules and failure mechanism of rock mass and to evaluating the safety and reliability of geotechnical engineering. Both continua methods and discontinua methods,with the finite element analysis and the discrete element analysis being representive respectively, have their own advantages. Yet both are hard to analyze the failure process from continua to discontinua. Some methods, for example, the extended finite element method, can handle the crack propagation in principle. However, there are still some cruces that need to be solved urgently, like the mesh dependency, the natural extension of multiple fissures, low calculation efficiency, and so on. The discrete element method is installed into the framework of the numerical manifold method to cope with the propagation of multiple fissures, combining, the mesh independence and the utility of contact treatment by Munjiza. The efficiency of contact detection is enhanced by the topological mapping of the block system, leading to a new utility procedure for analyzing the process from continua to discontinua. The proposed method is able to simulate efficiently the natural propagation of multiple fissures, and to overcome the mesh dependen
英文关键词: the numerical manifold method;continua-discontinua;multiple fissures;the discrete element method;rock mass