The attributes of object contours has great significance for instance segmentation task. However, most of the current popular deep neural networks do not pay much attention to the target edge information. Inspired by the human annotation process when making instance segmentation datasets, in this paper, we propose Mask Point RCNN aiming at promoting the neural networks attention to the target edge information, which can heighten the information propagates between multiple tasks by using different attributes features. Specifically, we present an auxiliary task to Mask RCNN, including utilizing keypoint detection technology to construct the target edge contour, and enhancing the sensitivity of the network to the object edge through multi task learning and feature fusion. These improvements are easy to implement and have a small amount of additional computing overhead. By extensive evaluations on the Cityscapes dataset, the results show that our approach outperforms vanilla Mask RCNN by 5.4% on the validation subset and 5.0% on the test subset.
翻译:对象轮廓的属性具有重大意义, 例如 分割任务 。 然而, 目前大多数广受欢迎的深神经网络并不重视目标边缘信息 。 在做例分解数据集时, 我们在此文件中建议使用人文批注程序, 目的是促进神经网络关注目标边缘信息, 这可以通过使用不同属性特征来增加多项任务之间的信息传播。 具体地说, 我们向 Mask RCNNN 展示了一个辅助任务, 包括利用关键点检测技术构建目标边缘等距, 通过多任务学习和特征组合提高网络对目标边缘的敏感性。 这些改进很容易实施, 并且有少量额外的计算间接费用。 通过对城市景景数据集的广泛评估, 结果表明, 我们的方法在验证子集上比Vanilla Mask RCNN 高出5.4%, 在测试子集上比 5.0% 高出5.0% 。