We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and $\mathbb{P}_1$ or $\mathbb{Q}_1$ finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time-dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.
翻译:我们考虑对3D对流占主导的运输问题进行通量校正的有限元素分解,并评估基于这种近似值的算法的计算效率。正在调查的方法包括通量校正的运输办法和单体限制。我们使用连续的Galerkin方法和$mathbb{P ⁇ 1美元或$\mathbb ⁇ 1美元来将空间分解。时间整合是通过Crank-Nicolson方法进行,或者使用一种维护Runge-Kutta方法的明显强大的稳定性来进行。非线性系统使用固定点重复法来解决,这需要在每个迭代或时间步骤中找到大型线性系统的解决方案。在选择离散方法和溶解器组件时,需要专门对现有方法进行比较研究。为了进行这种研究,我们定义了基于时间和固定性静态的溶解-反作用方程式的新的3D测试问题。我们的数字实验的结果说明了限制技术、时间分解和溶剂对总体性能的影响。