In this paper, we propose Manipulation Relationship Graph (MRG), a novel affordance representation which captures the underlying manipulation relationships of an arbitrary scene. To construct such graph from raw visual observation, a deep nerual network named AffRel is introduced. It consists of a Attribute and Context module, which guide the relationship learning at instance and subgraph level respectively. We quantitatively validate our method on a novel manipulation relationship dataset named SMRD dataset. To evaluate the performance of proposed model and representation, both visual and physical experiments are conducted. Overall, AffRel along with MRG outperforms all baselines, achieving the success rate of 88.89% on task relationship recognition (TRR) and 73.33% on task completion (TC). It demonstrates its superior capability to reason about the affordance in an interactive way for the purpose of robotic manipulation.
翻译:在本文中,我们提出“操纵关系图”(MRG),这是一部新颖的“操纵关系图”(MRG),可以捕捉任意场景的基本操纵关系。为了从原始视觉观察中构建这样的图表,我们引入了一个名为AffRel的深层神经网络。它包含一个属性和上下文模块,分别指导在实例和子集层次上进行的关系学习。我们在名为“SMRD数据集”的新型操纵关系数据集中量化地验证了我们的方法。为了评估拟议的模型和上下文的功能,我们进行了视觉和物理实验。总的来说,AffRel与MRG一道超越了所有基线,实现了任务关系识别成功率88.89%和任务完成成功率73.33%。它展示了它以互动方式解释支付关系的能力,以便进行机器人操纵。