Preference alignment is a critical step in making Large Language Models (LLMs) useful and aligned with (human) preferences. Existing approaches such as Reinforcement Learning from Human Feedback or Direct Preference Optimization typically require curated data and expensive optimization over billions of parameters, and eventually lead to persistent task-specific models. In this work, we introduce Preference alignment of Large Language Models via Residual Steering (PaLRS), a training-free method that exploits preference signals encoded in the residual streams of LLMs. From as few as one hundred preference pairs, PaLRS extracts lightweight, plug-and-play steering vectors that can be applied at inference time to push models toward preferred behaviors. We evaluate PaLRS on various small-to-medium-scale open-source LLMs, showing that PaLRS-aligned models achieve consistent gains on mathematical reasoning and code generation benchmarks while preserving baseline general-purpose performance. Moreover, when compared to DPO-aligned models, they perform better with huge time savings. Our findings highlight that PaLRS offers an effective, much more efficient and flexible alternative to standard preference optimization pipelines, offering a training-free, plug-and-play mechanism for alignment with minimal data.
翻译:暂无翻译