Point clouds are gaining prominence as a method for representing 3D shapes, but its irregular structure poses a challenge for deep learning methods. In this paper we propose CloudWalker, a novel method for learning 3D shapes using random walks. Previous works attempt to adapt Convolutional Neural Networks (CNNS) or impose a grid or mesh structure to 3D point clouds. This work presents a different approach to represent and learn the shape from a given point set. The key idea is to impose structure on the point set by multiple random walks through the cloud for exploring different regions of the 3D object. Then we learn a per-point and per-walk representation and aggregate multiple walk predictions at inference. Our approach achieves state-of-the-art results for two 3D shape analysis tasks: classification and retrieval. Furthermore, we propose a shape complexity indicator function that uses cross-walk and inter-walk variance measures to subdivide the shape space.
翻译:点云作为代表 3D 形状的一种方法越来越显眼, 但它的不正常结构对深层学习方法构成挑战。 在本文中, 我们提出云华克, 这是一种使用随机行走来学习 3D 形状的新颖方法。 先前的工作试图调整进化神经网络( CNNS), 或者将网格或网格结构强制到 3D 点云中。 这项工作提出了一种不同的方法来代表并学习从给定点集的形状。 关键的想法是将结构强加在由多条随机行走的云上, 以探索 3D 对象的不同区域 。 然后我们从推论中学习一个点和每行走代表, 以及综合多行走预测 。 我们的方法为两个 3D 形状分析任务( 分类和检索) 实现最先进的结果 。 此外, 我们提出一个形状复杂指标函数, 使用跨行和跨行行走差异测量来分解形状空间 。