The goal of structure-based drug discovery is to find small molecules that bind to a given target protein. Deep learning has been used to generate drug-like molecules with certain cheminformatic properties, but has not yet been applied to generating 3D molecules predicted to bind to proteins by sampling the conditional distribution of protein-ligand binding interactions. In this work, we describe for the first time a deep learning system for generating 3D molecular structures conditioned on a receptor binding site. We approach the problem using a conditional variational autoencoder trained on an atomic density grid representation of cross-docked protein-ligand structures. We apply atom fitting and bond inference procedures to construct valid molecular conformations from generated atomic densities. We evaluate the properties of the generated molecules and demonstrate that they change significantly when conditioned on mutated receptors. We also explore the latent space learned by our generative model using sampling and interpolation techniques. This work opens the door for end-to-end prediction of stable bioactive molecules from protein structures with deep learning.
翻译:基于结构的毒品发现的目的是找到与特定目标蛋白质结合的小型分子。深层学习被用于产生具有某些化学化学特性的药物类分子,但尚未用于通过对蛋白质-皮条和捆绑性相互作用的有条件分布进行抽样,产生预测与蛋白质结合的三维分子。在这项工作中,我们首次描述了一个以受体结合点为条件的生成三维分子结构的深层学习系统。我们利用一个条件性变异自动编码器来解决这个问题,该自动编码器受过跨层蛋白质-皮条结构原子密度网代表的训练。我们应用原子装配和联结推断程序来从生成原子密度中构建有效的分子一致性。我们评估所生成的分子的特性,并表明在以受色素受体为条件时,它们会发生重大变化。我们还利用采样和内插技术探索我们的基因化模型所学到的潜在空间。这项工作开启了从蛋白质结构中以深层学习的方式对稳定生物活性分子进行最终预测的大门。