We propose the molecular omics network (MOOMIN) a multimodal graph neural network used by AstraZeneca oncologists to predict the synergy of drug combinations for cancer treatment. Our model learns drug representations at multiple scales based on a drug-protein interaction network and metadata. Structural properties of compounds and proteins are encoded to create vertex features for a message-passing scheme that operates on the bipartite interaction graph. Propagated messages form multi-resolution drug representations which we utilized to create drug pair descriptors. By conditioning the drug combination representations on the cancer cell type we define a synergy scoring function that can inductively score unseen pairs of drugs. Experimental results on the synergy scoring task demonstrate that MOOMIN outperforms state-of-the-art graph fingerprinting, proximity preserving node embedding, and existing deep learning approaches. Further results establish that the predictive performance of our model is robust to hyperparameter changes. We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues, out-of-sample predictions can be validated with external synergy databases, and that the proposed model is data efficient at learning.
翻译:我们建议分子流学网络(MOOMIN) 由AstraZeneca肿瘤学家用来预测癌症治疗药物组合的协同效应的多式联运图解神经网络(MOOMIN), 由AstraZeneca肿瘤学家用来预测癌症治疗药物组合的协同效应。 我们的模型在药物-蛋白相互作用网络和元数据的基础上,在多个尺度上学习药物。 化合物和蛋白质的结构特性被编码,为在双面互动图上运行的信息传递计划创建脊椎特征。 预发信息形成多种分辨率的药物表现,我们用来创建药物配对描述器。 通过在癌症细胞类型的药物综合表现中设置一个协同效应评分功能,我们定义了能够感应到看不见的药物组合。 协同评分任务的实验结果显示, MOMIN 超越了最先进的图形指纹、 近距离保存节点嵌和现有的深层学习方法。 进一步的结果证明, 我们模型的预测性性性能强于超度参数变化。 我们证明模型对广泛的癌症细胞线组织进行高质量的预测, 外部模型的预测可以验证为高效的协同关系数据库, 。