We introduce a method for instance proposal generation for 3D point clouds. Existing techniques typically directly regress proposals in a single feed-forward step, leading to inaccurate estimation. We show that this serves as a critical bottleneck, and propose a method based on iterative bilateral filtering with learned kernels. Following the spirit of bilateral filtering, we consider both the deep feature embeddings of each point, as well as their locations in the 3D space. We show via synthetic experiments that our method brings drastic improvements when generating instance proposals for a given point of interest. We further validate our method on the challenging ScanNet benchmark, achieving the best instance segmentation performance amongst the sub-category of top-down methods.
翻译:我们引入了一种方法,例如为3D点云生成建议。 现有技术通常在一次反馈前步骤中直接退让建议,导致不准确的估计。 我们显示这是一个关键的瓶颈, 并提出了一种基于利用有知识的内核进行迭接双边过滤的方法。 按照双边过滤的精神, 我们既考虑每个点的深层特征嵌入,也考虑它们在3D空间的位置。 我们通过合成实验显示,我们的方法在产生特定利益点的示范建议时带来了巨大的改进。 我们进一步验证了我们在具有挑战性的 ScanNet 基准上的方法, 在自上而下方法的亚类中实现了最佳的分化性表现。