3D point clouds have attracted increasing attention in architecture, engineering, and construction due to their high-quality object representation and efficient acquisition methods. Consequently, many point cloud feature detection methods have been proposed in the literature to automate some workflows, such as their classification or part segmentation. Nevertheless, the performance of point cloud automated systems significantly lags behind their image counterparts. While part of this failure stems from the irregularity, unstructuredness, and disorder of point clouds, which makes the task of point cloud feature detection significantly more challenging than the image one, we argue that a lack of inspiration from the image domain might be the primary cause of such a gap. Indeed, given the overwhelming success of Convolutional Neural Networks (CNNs) in image feature detection, it seems reasonable to design their point cloud counterparts, but none of the proposed approaches closely resembles them. Specifically, even though many approaches generalise the convolution operation in point clouds, they fail to emulate the CNNs multiple-feature detection and pooling operations. For this reason, we propose a graph convolution-based unit, dubbed Shrinking unit, that can be stacked vertically and horizontally for the design of CNN-like 3D point cloud feature extractors. Given that self, local and global correlations between points in a point cloud convey crucial spatial geometric information, we also leverage them during the feature extraction process. We evaluate our proposal by designing a feature extractor model for the ModelNet-10 benchmark dataset and achieve 90.64% classification accuracy, demonstrating that our innovative idea is effective. Our code is available at github.com/albertotamajo/Shrinking-unit.


翻译:3D点云在建筑、工程和建筑方面引起了越来越多的关注,因为其质量高的物体分布和高效的获取方法。因此,文献中提出了许多点云特征探测方法,以使一些工作流程自动化,如分类或部分分割。然而,点云自动系统的性能大大落后于其图像对等系统。尽管部分失败是由于点云的不规则、不结构、混乱和混乱造成的,这使得点云特征探测任务比图像任务更具挑战性,但我们认为,缺乏图像域的灵感可能是造成这种差距的主要原因。事实上,鉴于C convolutional Neural网络在图像特征探测方面非常成功,设计其点云层对等系统似乎是合理的,但拟议的方法却没有一个与它们相似。具体地说,尽管许多方法将点云层的变异操作简单化,但是它们无法模仿CNNS的多功能模型检测和集合操作。为此,我们提议了一个基于图表的变异化单位, 调缩缩缩缩图单位, 可以在图像特征检测中构建一个垂直和水平的地标, 将我们的数据转换成一个稳定的地标路标, 。在中央数据模型和直径基的模型中,我们也可以地标中, 将一个直径对地标的自我定位进行自我定位, 。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员