项目名称: 磁、力、电、光多场调控低维氧化锌基复合纳米材料

项目编号: No.11474151

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 钟伟

作者单位: 南京大学

项目金额: 98万元

中文摘要: 调控电子自旋通常都是由外加磁场来实现的,如能实现电、光、力、热等多场调控,可使器件的设计增加更多的自由度,有望实现快速、低耗及微型化。纳米材料中磁、力、电、光等物理性能间的相互耦合和调控在基础研究领域及微纳米器件设计方面都具有重要意义。本项目针对两类ZnO基复合纳米材料: ZnO/氧化物磁性材料组成的复合纳米线和ZnO/磁相变合金(如Tb-Dy-Fe合金)组成的复合薄膜,系统研究结构、组成、尺寸和维度对材料物性的影响;研究磁性、输运性质、以及光学性能之间的相互影响,从理论和实验上揭示出复合纳米材料的物理性能与微结构之间的内在联系;系统研究ZnO复合薄膜材料的力-电耦合效应,磁-力耦合效应,理解复合纳米体系磁电耦合的物理机制;研究单根ZnO复合纳米线的输运性质;研究磁场、电场对复合纳米体系发光性能以及光催化性能的影响,为实现ZnO复合纳米材料性能的多场调控提供翔实可靠的理论依据。

中文关键词: 磁性材料;磁性纳米材料;自旋输运;磁学性质

英文摘要: Usually, the spin of electrons was controlled by a magnetic field. If we are able to use electrical, optical, mechanical and thermal fields to regulate electronic spin, we can design the device more freedom and can make the device being rapid, low consumption and miniaturization. It is of great significance in fields of basic research and micro/nano device designing to investigate the coupling interactions among the physical properties such as magnetic, mechanical, electrical and optical properties. In this project, we intend to design and assemble two kinds of ZnO-based composite nanomaterials: one-dimensional ZnO/oxide magnetic materials (such as CoFe2O4) system and ZnO/magnetic phase transition metal (such as Tb - Dy - Fe alloy) composite membrane system, to study the influences of structure, composition,size and dimension on the physical properties; to investigate the interaction of magnetic, transport and optical properties. We will reveals the inner relationship between microstructures and the physical properties of the composite nanomaterials both in theory and in experiment; we will investigate mechano-electronic coupling factors in ZnO materials and magneto-mechano coupling factors in magnetic materials, understanding the physical mechanisms of magnetoelectric coupling in composite nanomaterials; we will also study the influences of magnetic field and electric field on the properties of luminescence properties and photocatalytic performance of ZnO-based nanomaterials, in order to provide reliable and detailed scientific evidences to adjust and control the properties of ZnO composite nanomaterials by multiple -field.

英文关键词: magnetic materials;magneitc nanomaterials;spin transport;magneitc properties

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
24+阅读 · 2022年4月13日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
51+阅读 · 2021年12月6日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
38+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
45+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
24+阅读 · 2022年4月13日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
51+阅读 · 2021年12月6日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
38+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
45+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员