Can we discover dialog structure by dividing utterances into labelled clusters. Can these labels be generated from the data. Typically for dialogs we need an ontology and use that to discover structure, however by using unsupervised classification and self-labelling we are able to intuit this structure without any labels or ontology. In this paper we apply SCAN (Semantic Clustering using Nearest Neighbors) to dialog data. We used BERT for pretext task and an adaptation of SCAN for clustering and self labeling. These clusters are used to identify transition probabilities and create the dialog structure. The self-labelling method used for SCAN makes these structures interpretable as every cluster has a label. As the approach is unsupervised, evaluation metrics is a challenge, we use statistical measures as proxies for structure quality


翻译:我们能否通过将语句分割成标签的组群来发现对话框结构 。 这些标签能否从数据中生成 。 通常, 对于对话, 我们需要一种本体学, 并使用它来发现结构, 但是, 使用不受监督的分类和自贴标签, 我们就可以在没有任何标签或本体学的情况下对这个结构进行检查。 在本文中, 我们应用 SCAN( 使用近邻的词组群) 来对对话框数据 。 我们使用 BERT 来进行借口任务, 并修改 SCAN 的分组和自贴标签 。 这些组群用来识别过渡概率, 并创建对话框结构 。 SCAN 使用的自贴标签方法使得这些结构可以解释, 因为每个组群群都有标签 。 由于这个方法不受监督, 评估指标是一个挑战 。 我们使用统计措施作为结构质量的代理物 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
12+阅读 · 2020年9月19日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员