The paper introduces structured machine learning regressions for heavy-tailed dependent panel data potentially sampled at different frequencies. We focus on the sparse-group LASSO regularization. This type of regularization can take advantage of the mixed frequency time series panel data structures and improve the quality of the estimates. We obtain oracle inequalities for the pooled and fixed effects sparse-group LASSO panel data estimators recognizing that financial and economic data can have fat tails. To that end, we leverage on a new Fuk-Nagaev concentration inequality for panel data consisting of heavy-tailed $\tau$-mixing processes.


翻译:本文介绍了可能在不同频率取样的重尾依赖小组数据的结构化机算学习回归。我们侧重于小类LASSO正规化。这种正规化可以利用混合频率时间序列小组数据结构,提高估算质量。我们获得集合效应和固定效应小类LASSO小组数据估计器的甲骨文不平等,认识到金融和经济数据可能有脂肪尾巴。为此,我们利用新的Fuk-Nagaev浓度不平等来获取由重尾美元混合工艺组成的小组数据。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员