This paper presents comparison of custom ensemble models with the models trained using existing libraries Like Xgboost, Scikit Learn, etc. in case of predictive equipment failure for the case of oil extracting equipment setup. The dataset that is used contains many missing values and the paper proposes different model-based data imputation strategies to impute the missing values. The architecture and the training and testing process of the custom ensemble models are explained in detail.
翻译:本文件比较了定制混合模型与利用现有图书馆培训的模型的比较,如Xgboost、Scikit Learning等,如果石油采油设备安装出现预测设备故障,则使用这些模型。使用的数据集包含许多缺失的值,本文件提出了不同的基于模型的数据估算战略,以估算缺失值。详细解释了定制混合模型的结构以及培训和测试过程。