Image restoration encompasses fundamental image processing tasks that have been addressed with different algorithms and deep learning methods. Classical restoration algorithms leverage a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Thus, deep learning methods often produce superior restoration quality. Deep networks are, however, capable of strong and hardly-predictable hallucinations. Networks jointly and implicitly learn to be faithful to the observed data while learning an image prior, and the separation of original and hallucinated data downstream is then not possible. This limits their wide-spread adoption in restoration applications. Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting. We present an approach with decoupled network-prior hallucination and data fidelity. We refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method is rooted in a Bayesian restoration framework, and tightly connected to classical restoration methods. In fact, our approach can be viewed as a generalization of a large family of classical restoration algorithms. We leverage a recent network inversion method to extract image prior information from a generative network. We show on image colorization, inpainting, and denoising that our framework consistently improves the prior results through good integration of data fidelity. Our method, though partly reliant on the quality of the generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed, the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed framework.
翻译:图像恢复包含基本的图像处理任务, 这些任务已经通过不同的算法和深层学习方法得到解决。 经典恢复算法会以隐含或明确的方式利用各种前科。 它们的前科是手工设计的, 对应的重量是粗略分配的。 因此, 深层次的学习方法往往能产生较高的恢复质量。 深层次的网络能够产生强烈和几乎难以预测的幻觉。 网络联手并隐含地学会忠实于观测到的数据, 同时学习之前的图像, 然后将原始和美化的数据分解到下游是不可能的。 这限制了它们在恢复应用中的广泛采用。 此外, 这些前层的修补算法往往也是修饰的。 我们用分解的网络前端的精度和数据忠度来分析我们之前的网络的精度。 我们用一个不断的网络化方法来改进我们之前的基因整合方法。 我们的精度, 之前的网络的精度和前端的精度的精度分析方法通过之前的基因恢复方法来分析我们之前的精度。 我们的精度的精度, 之前的网络的精度的精度化方法通过前端的精度的精度分析方法, 将我们之前的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 在之前的精度的精度的精度结构的精度的精度的精度结构的精度的精度分析方法在前的精度上, 通过前端的精度的精度的精度的精度的精度结构的精度的精度结构的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度上, 我们的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 在前的精度的精度上, 我们的精度的精度的精度的精度的精度的精度的精度的精度的精度在前的精度的精度的精度上, 在前的精度的精度的精度的精度的精度