Projected gradient ascent describes a form of no-regret learning algorithm that is known to converge to a coarse correlated equilibrium. Recent results showed that projected gradient ascent often finds the Nash equilibrium, even in situations where the set of coarse correlated equilibria is very large. We introduce semicoarse correlated equilibria, a solution concept that refines coarse correlated equilibria for the outcomes of gradient dynamics, while remaining computationally tractable through linear programming representations. Our theoretical analysis of the discretised Bertrand competition mirrors those recently established for mean-based learning in first-price auctions. With at least two firms of lowest marginal cost, Nash equilibria emerge as the only semicoarse equilibria under concavity conditions on firm profits. In first-price auctions, the granularity of the bid space affects semicoarse equilibria, but finer granularity for lower bids also induces convergence to Nash equilibria. Unlike previous work that aims to prove convergence to a Nash equilibrium that often relies on epoch based analysis and probability theoretic machinery, our LP-based duality approach enables a simple and tractable analysis of equilibrium selection under gradient-based learning.
翻译:暂无翻译