Deep learning based methods have seen a massive rise in popularity for hyperspectral image classification over the past few years. However, the success of deep learning is attributed greatly to numerous labeled samples. It is still very challenging to use only a few labeled samples to train deep learning models to reach a high classification accuracy. An active deep-learning framework trained by an end-to-end manner is, therefore, proposed by this paper in order to minimize the hyperspectral image classification costs. First, a deep densely connected convolutional network is considered for hyperspectral image classification. Different from the traditional active learning methods, an additional network is added to the designed deep densely connected convolutional network to predict the loss of input samples. Then, the additional network could be used to suggest unlabeled samples that the deep densely connected convolutional network is more likely to produce a wrong label. Note that the additional network uses the intermediate features of the deep densely connected convolutional network as input. Therefore, the proposed method is an end-to-end framework. Subsequently, a few of the selected samples are labelled manually and added to the training samples. The deep densely connected convolutional network is therefore trained using the new training set. Finally, the steps above are repeated to train the whole framework iteratively. Extensive experiments illustrates that the method proposed could reach a high accuracy in classification after selecting just a few samples.


翻译:深层学习方法显示,过去几年来超光谱图像分类的受欢迎程度大幅上升,但深层学习的成功在很大程度上归功于许多贴标签的样本。使用几个贴标签的样本来训练深层学习模型以达到高分类精度,仍然非常困难。因此,本文提出了一个以端对端方式培训的积极深层学习框架,以尽量减少高光谱图像分类成本。首先,考虑对高光谱图像分类采用一个深密连通的 convolual网络。与传统的积极学习方法不同,在设计深密连通的深层革命网络中增加了一个额外的网络,以预测输入样品的损失。然后,可以使用补充网络来建议一些没有贴标签的样本,说明深密连通的革命网络更有可能产生错误的标签。请注意,额外的网络使用深密连通的革命网络的中间特征作为投入。因此,拟议的方法是一个端对端到端的图像分类框架。随后,一些选定的样本被贴上手工标签并添加到培训样本中。刚刚深密连通的同层革命网络在选择一个高层次的模型之后,可以重复地选择一个高层次的模型。最后,在选择一个高层次的模型之后,再选择一个高层次的模型。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
98+阅读 · 2020年1月13日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关VIP内容
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
98+阅读 · 2020年1月13日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月4日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员