In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-stabilization of interior jump terms. The bilinear form with interior over-stabilization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-stabilization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
翻译:在本文中,我们提出了一种内部跳跃项过稳定增强Galerkin方法,用于解决二阶椭圆方程。带有内部过稳定的双线性形式提供的范数是不同于经典不连续Galerkin方法中的离散能量范数的非标准范数。尽管如此,我们证明通过结合先验和后验误差分析技术可以获得标准离散能量范数的最优先验误差估计。我们还通过分析双线性形式的谱等价性证明,内部过稳定对于构造具有网格细化鲁棒性的预处理器是有优势的。数值结果用于说明收敛和预处理结果。