Numerical computation of the ideal Magnetohydrodynamic (MHD) equilibrium magnetic field is at the base of stellarator optimisation and provides the starting point for solving more sophisticated Partial Differential Equations (PDEs) like transport or turbulence models. Conventional approaches solve for a single stationary point of the ideal MHD equations, which is fully defined by three invariants and the numerical scheme employed by the solver. We present the first numerical approach that can solve for a continuous distribution of equilibria with fixed boundary and rotational transform, varying only the pressure invariant. This approach minimises the force residual by optimising parameters of multilayer perceptrons (MLP) that map from a scalar pressure multiplier to the Fourier Zernike basis as implemented in the modern stellarator equilibrium solver DESC.
翻译:理想磁流体动力学平衡磁场的数值计算是仿星器优化的基础,并为求解更复杂的偏微分方程(如输运或湍流模型)提供了起点。传统方法求解理想磁流体动力学方程的一个单一稳态点,该点完全由三个不变量和求解器所采用的数值格式定义。我们提出了首个能够求解具有固定边界和旋转变换、仅改变压力不变量的连续平衡分布的数值方法。该方法通过优化多层感知机的参数来最小化力残差,这些多层感知机将标量压力乘子映射到现代仿星器平衡求解器DESC中实现的傅里叶-泽尼克基上。