Target-decoy competition (TDC) is commonly used in the computational mass spectrometry community for false discovery rate (FDR) control (6). Recently, TDC's underlying approach of competition-based FDR control has gained significant popularity in other fields after Barber and Candes laid its theoretical foundation in a more general setting (1). However, any approach that aims to control the FDR, which is defined as the expected value of the false discovery proportion (FDP), suffers from a problem. Specifically, even when successfully controlling the FDR al level {\alpha}, the FDP in our list of discoveries can significantly exceed {\alpha}. We offer two new procedures to address this problem. TDC-SD rigorously controls the FDP in the competition setup by guaranteeing that the FDP is bounded by {\alpha} at any desired confidence level. The complementary TDC-UB is designed to bound the FDP for any list of top scoring target discoveries. For example, TDC-UB can give a 95%-confidence upper-bound on the FDP when using the canonical TDC procedure for controlling the FDR. We demonstrate the utility of these procedures using synthetic and real data in multiple domains.


翻译:目标标记竞争(TDC)通常用于计算质量分光谱社区,以控制虚假发现率(FDR) (6)。最近,在Barber和Candes在更笼统的环境下奠定了理论基础之后,TDC以竞争为基础的FDR控制基本方法在其他领域受到欢迎(1)。然而,任何旨在控制FDR(被界定为虚假发现比例(FDP)的预期值)的方法都存在问题。具体地说,即使成功地控制FDR al 水平(alpha}),我们发现清单中的FDP(FDP)可能大大超过~alpha}。我们提供了两个解决这一问题的新程序。TDC-SD严格控制FDP(FDP)在竞争设置中的竞争设置,保证FDP(FDP)在任何期望的信任级别上都受~alpha}的束缚。补充TDC-UB(UB)的目的是将FDP(FDP)绑定任何最高得分值目标发现清单。例如TDC-UB(FDP)在使用罐体TDC程序控制FDR(TDR)时,我们用多种合成域显示这些程序的效用。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月8日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员