In this paper, we demonstrate that the explicit ADER approach as it is used inter alia in [1] can be seen as a special interpretation of the deferred correction (DeC) method as introduced in [2]. By using this fact, we are able to embed ADER in a theoretical background of time integration schemes and prove the relation between the accuracy order and the number of iterations which are needed to reach the desired order. Next, we extend our investigation to stiff ODEs, treating these source terms implicitly. Some differences in the interpretation and implementation can be found. Using DeC yields typically a much simpler implementation, while ADER benefits from a higher accuracy, at least for our numerical simulations. Then, we also focus on the PDE case and present common space-time discretizations using DeC and ADER in closed forms. Finally, in the numerical section we investigate A-stability for the ADER approach - this is done for the first time up to our knowledge - for different order using several basis functions and compare them with the DeC ansatz. Then, we compare the performance of ADER and DeC for stiff and non-stiff ODEs and verify our analysis focusing on two basic hyperbolic problems. [1] O. Zanotti, F. Fambri, M. Dumbser, and A. Hidalgo. Space-time adaptive ader discontinuous galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Computers & Fluids, 118:204-224, 2015. [2] A. Dutt, L. Greengard, and V. Rokhlin. Spectral Deferred Correction Methods for Ordinary Differential Equations. BIT Numerical Mathematics, 40(2):241-266, 2000.


翻译:在本文中,我们证明,在[1]中所使用的明确的ADER方法,除其他外在[1]中所使用的明确ADER方法,可以被视为对[2]中采用的推迟更正(DeC)方法的一种特殊解释。通过使用这一事实,我们可以将ADER纳入时间整合计划的理论背景,并证明准确顺序与达到预期顺序所需迭代数量之间的关系。接下来,我们将我们的调查扩大到僵硬的源代码,对这些源术语进行隐含的处理。在解释和执行方面可以发现一些差异。使用 DeC通常能产生更简单的执行,而ADER则从更精确的ODER(至少对于我们的数字模拟而言)中得到好处。然后,我们还侧重于PDE案件,并且使用DeC和ADER的封闭形式提出共同的空间时间分解。最后,在数字部分中,我们调查A-可达到理想顺序的方法――这是我们第一次使用多种基础功能,并与DeC liveralalalalalalalal, Astoraltial-ralalalal。然后,我们比较了ADER的绩效和Decal-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-reval-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-al-al-al-al-al-ral-ral)。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
4+阅读 · 2019年4月17日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员