The dramatic growth of big datasets presents a new challenge to data storage and analysis. Data reduction, or subsampling, that extracts useful information from datasets is a crucial step in big data analysis. We propose an orthogonal subsampling (OSS) approach for big data with a focus on linear regression models. The approach is inspired by the fact that an orthogonal array of two levels provides the best experimental design for linear regression models in the sense that it minimizes the average variance of the estimated parameters and provides the best predictions. The merits of OSS are three-fold: (i) it is easy to implement and fast; (ii) it is suitable for distributed parallel computing and ensures the subsamples selected in different batches have no common data points; and (iii) it outperforms existing methods in minimizing the mean squared errors of the estimated parameters and maximizing the efficiencies of the selected subsamples. Theoretical results and extensive numerical results show that the OSS approach is superior to existing subsampling approaches. It is also more robust to the presence of interactions among covariates and, when they do exist, OSS provides more precise estimates of the interaction effects than existing methods. The advantages of OSS are also illustrated through analysis of real data.
翻译:大数据集的急剧增长给数据储存和分析带来了新的挑战。数据减少或子抽样从数据集中提取有用信息是大数据分析的一个关键步骤。我们建议对大数据采用以线性回归模型为重点的正方位子抽样(OSS)方法。这个方法的灵感来自两个层次的正方位阵列为线性回归模型提供了最佳的实验设计,因为它最大限度地缩小了估计参数的平均差异,提供了最佳预测。开放源码软件的优点有三重:(一)易于执行和快速执行;(二)适合分布式平行计算,并确保在不同批次中选定的子抽样没有共同的数据点;以及(三)它优于现有方法,即尽可能减少估计参数的平均平方差,最大限度地提高选定子样本的效率。理论结果和广泛的数字结果表明,开放源码软件的方法优于现有的子标本方法。它也更有力地反映同等变量之间的相互作用,而且当它们确实存在数据分析的优势时,也更准确地显示现有开放源码软件的优势。