The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with the degree heterogeneity and covariates. However, it may cause information loss when it is applied in weighted networks. In this paper, we propose to use the Poisson distribution to model weighted directed networks, which admits the sparsity of networks, the degree heterogeneity and the homophily caused by covariates of nodes. We call it the \emph{network Poisson model}. The model contains a density parameter $\mu$, a $2n$-dimensional node parameter ${\theta}$ and a fixed dimensional regression coefficient ${\gamma}$ of covariates. Since the number of parameters increases with $n$, asymptotic theory is nonstandard. When the number $n$ of nodes goes to infinity, we establish the $\ell_\infty$-errors for the maximum likelihood estimators (MLEs), $\hat{\theta}$ and $\hat{{\gamma}}$, which are $O_p( (\log n/n)^{1/2} )$ for $\hat{\theta}$ and $O_p( \log n/n)$ for $\hat{{\gamma}}$, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings. ) for b{\theta} and Op(log n/n) for b{\gamma}, up to an additional factor. We also obtain the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.


翻译:网络的边缘不仅是二进制的, 无论是现在还是不存在, 并且在许多情景中( 比如两个用户之间电子邮件的数量) 都使用加权值。 我们称之为 comvaate- p_ 0$ 模型, 以 程度异质和共异性来模拟二进制网络。 但是, 当在加权网络中应用时, 它可能会造成信息丢失。 在本文中, 我们提议使用 Poisson 分布 来模拟加权定向网络, 它承认网络的宽度、 度异质性以及由 点价的正价( 例如两个用户之间的电子邮件数量 ) 。 我们称之为\emph{ 网络 Poisson 模型。 这个模型包含一个密度参数 $\ mu$, 一个 $- 的维度 node node 参数 值 $_ gemta} 。 由于参数的数量在 $( =_ 美元) 补充理论是非标准 。 当无序的数值到 美元时, 我们也可以建立 $\\\\\\\\\ 美元 美元 数据 最高值的 数据分析 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年4月12日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员