Gaussian graphical models are popular tools for studying the dependence relationships between different random variables. We propose a novel approach to Gaussian graphical models that relies on decomposing the precision matrix encoding the conditional independence relationships into a low rank and a diagonal component. Such decompositions are already popular for modeling large covariance matrices as they admit a latent factor based representation that allows easy inference but are yet to garner widespread use in precision matrix models due to their computational intractability. We show that a simple latent variable representation for such decomposition in fact exists for precision matrices as well. The latent variable construction provides fundamentally novel insights into Gaussian graphical models. It is also immediately useful in Bayesian settings in achieving efficient posterior inference via a straightforward Gibbs sampler that scales very well to high-dimensional problems far beyond the limits of the current state-of-the-art. The ability to efficiently explore the full posterior space allows the model uncertainty to be easily assessed and the underlying graph to be determined via a novel posterior false discovery rate control procedure. The decomposition also crucially allows us to adapt sparsity inducing priors to shrink insignificant off-diagonal entries toward zero, making the approach adaptable to high-dimensional small-sample-size sparse settings. We evaluate the method's empirical performance through synthetic experiments and illustrate its practical utility in data sets from two different application domains.
翻译:Gausian 图形模型是研究不同随机变量之间依赖关系的流行工具。 我们建议对 Gausian 图形模型采用一种新颖的方法,该方法依赖于将精确矩阵将有条件的独立关系编码成低级和对角元组成部分的精确矩阵。 这种分解对于模拟大型共变矩阵来说已经很受欢迎,因为它们承认了一个基于潜在要素的表达方式,它容易推导,但因其可计算性而尚未在精确矩阵模型中广泛使用。 我们表明,对于精确矩阵事实上的分解存在一个简单的潜在变量代表形式。 潜在变量的构造为高山地区图形模型提供了根本的新颖的洞见。 在巴伊西亚环境环境中,这种分解对于通过直观的Gib采样器实现高效的远比对远超出当前状态界限的高维值推断也非常有用。 高效地探索整个后方空间的能力使得模型的不确定性很容易被评估,而基本图表则通过新式的子表层发现率率控制程序来确定。 隐含变量的构造也非常关键地让我们通过一个直接的Gaustial imal intal intal intal intal intal imprestistration compal impact compact compeal view viewmental degradudududududududucalmentalmentalmental labal violtical