In this paper, we propose hybrid data-driven ROM closures for fluid flows. These new ROM closures combine two fundamentally different strategies: (i) purely data-driven ROM closures, both for the velocity and the pressure; and (ii) physically based, eddy viscosity data-driven closures, which model the energy transfer in the system. The first strategy consists in the addition of closure/correction terms to the governing equations, which are built from the available data. The second strategy includes turbulence modeling by adding eddy viscosity terms, which are determined by using machine learning techniques. The two strategies are combined for the first time in this paper to investigate a two-dimensional flow past a circular cylinder at Re=50000. Our numerical results show that the hybrid data-driven ROM is more accurate than both the purely data-driven ROM and the eddy viscosity ROM.
翻译:在本文中,我们建议对流体流动采用混合数据驱动的 ROM 关闭。这些新的 ROM 关闭结合了两种根本不同的战略:(一) 纯数据驱动的 ROM 关闭,既针对速度,也针对压力;(二) 以物理为基础,以易燃粘度数据驱动的关闭为模型,以此模拟系统中的能源传输。第一个战略是在现有数据的基础上,在治理方程中增加闭合/纠正术语。第二个战略包括通过添加 Eddy 粘度 术语来进行气流建模,这些术语由机器学习技术决定。在本文中,两个战略是首次结合在一起,以调查在 Re=50000 圆圆圆柱上的二维流。我们的数字结果表明,混合数据驱动的ROM比纯数据驱动的ROM 和 eddy 粘度ROM 都更准确。