The investigation of fluid-solid systems is very important in a lot of industrial processes. From a computational point of view, the simulation of such systems is very expensive, especially when a huge number of parametric configurations needs to be studied. In this context, we develop a non-intrusive data-driven reduced order model (ROM) built using the proper orthogonal decomposition with interpolation (PODI) method for Computational Fluid Dynamics (CFD) -- Discrete Element Method (DEM) simulations. The main novelties of the proposed approach rely in (i) the combination of ROM and FV methods, (ii) a numerical sensitivity analysis of the ROM accuracy with respect to the number of POD modes and to the cardinality of the training set and (iii) a parametric study with respect to the Stokes number. We test our ROM on the fluidized bed benchmark problem. The accuracy of the ROM is assessed against results obtained with the FOM both for Eulerian (the fluid volume fraction) and Lagrangian (position and velocity of the particles) quantities. We also discuss the efficiency of our ROM approach.
翻译:在很多工业过程中,对液体固态系统的调查非常重要。从计算的观点来看,模拟这些系统的模拟费用非常昂贵,特别是在需要研究大量参数配置的情况下。在这方面,我们开发了一个非侵入性数据驱动的减序模型(ROM),该模型是使用对流体动力计算(CFD) -- -- 分解元素法(DEM)模拟的中间分解法(PODI)方法建立的。拟议方法的主要新颖之处在于(一) 将ROM和FV方法结合起来,(二) 对ROM精确度的数值敏感度分析,涉及POD模式的数目和训练组的基本性,(三) 对Stokes编号进行参数研究。我们用我们的ROM对流化床基准问题进行了测试。对ROM的准确性进行了评估,这是根据FOM对Eulirian(液体数量)和Lagrangian(粒子的定位和速度)方法取得的结果进行的。我们还讨论了我们的方法的效率。</s>