We consider "surrounding" versions of the classic Cops and Robber game. The game is played on a connected graph in which two players, one controlling a number of cops and the other controlling a robber, take alternating turns. In a turn, each player may move each of their pieces: The robber always moves between adjacent vertices. Regarding the moves of the cops we distinguish four versions that differ in whether the cops are on the vertices or the edges of the graph and whether the robber may move on/through them. The goal of the cops is to surround the robber, i.e., occupying all neighbors (vertex version) or incident edges (edge version) of the robber's current vertex. In contrast, the robber tries to avoid being surrounded indefinitely. Given a graph, the so-called cop number denotes the minimum number of cops required to eventually surround the robber. We relate the different cop numbers of these versions and prove that none of them is bounded by a function of the classical cop number and the maximum degree of the graph, thereby refuting a conjecture by Crytser, Komarov and Mackey [Graphs and Combinatorics, 2020].


翻译:我们考虑经典的Cops和Robber游戏的“ 翻滚” 版本。 游戏是在一个连接的图表上播放的, 其中两个玩家, 一个控制着几个警察, 另一个控制着一个强盗, 轮流轮流。 反过来, 每个玩家可以移动每个片段: 强盗总是在相邻的悬崖之间移动。 关于警察的移动, 我们区分了四个版本, 即警察是否在图的边缘, 以及强盗是否可以在图上移动/ 通过它们。 警察的目标是包围强盗, 也就是说, 占据强盗当前头骨中的所有邻居( 垂直版) 或事件边缘( 顶端版) 。 相反, 强盗试图避免被无限期包围。 从一张图上看, 所谓的警察人数代表了最终包围强盗所需的最低警察人数 。 我们把这些版本的不同警察人数联系起来, 并证明这些版本中没有一个被古典警察数字和最大程度的图表捆绑在一起, 从而用隐蔽式、 堪称的2020 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员