The research on human emotion under multimedia stimulation based on physiological signals is an emerging field, and important progress has been achieved for emotion recognition based on multi-modal signals. However, it is challenging to make full use of the complementarity among spatial-spectral-temporal domain features for emotion recognition, as well as model the heterogeneity and correlation among multi-modal signals. In this paper, we propose a novel two-stream heterogeneous graph recurrent neural network, named HetEmotionNet, fusing multi-modal physiological signals for emotion recognition. Specifically, HetEmotionNet consists of the spatial-temporal stream and the spatial-spectral stream, which can fuse spatial-spectral-temporal domain features in a unified framework. Each stream is composed of the graph transformer network for modeling the heterogeneity, the graph convolutional network for modeling the correlation, and the gated recurrent unit for capturing the temporal domain or spectral domain dependency. Extensive experiments on two real-world datasets demonstrate that our proposed model achieves better performance than state-of-the-art baselines.


翻译:基于生理信号的多媒体刺激下的人类情感研究是一个新兴领域,在基于多模式信号的情感识别方面取得了重要进展。然而,充分利用空间光谱时空域特征之间的互补性促进情感识别,以及多模式信号之间的异质性和相关性模型是具有挑战性的。在本文中,我们提议建立一个名为HetEmotionNet的新型双流多元图经常性神经网络,为情感识别提供多模式生理信号。具体地说,HetEmotionNet由空间时空流和空间光谱流组成,可以在统一的框架内结合空间光谱时空域特征。每条流都由图变异网络组成,以模型的形式建模相关关系,图变动网络以及用于捕捉时域域或光谱域依赖的封闭式经常性单元组成。关于两个真实世界数据集的广泛实验表明,我们提议的模型的性能优于最新基线。

0
下载
关闭预览

相关内容

循环神经网络(RNN)是一类人工神经网络,其中节点之间的连接沿时间序列形成有向图。 这使其表现出时间动态行为。 RNN源自前馈神经网络,可以使用其内部状态(内存)来处理可变长度的输入序列。这使得它们适用于诸如未分段的,连接的手写识别或语音识别之类的任务。
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Arxiv
10+阅读 · 2019年2月19日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
VIP会员
相关VIP内容
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
Top
微信扫码咨询专知VIP会员