Accurate control of robots in the real world requires a control system that is capable of taking into account the kinodynamic interactions of the robot with its environment. At high speeds, the dependence of the movement of the robot on these kinodynamic interactions becomes more pronounced, making high-speed, accurate robot control a challenging problem. Previous work has shown that learning the inverse kinodynamics (IKD) of the robot can be helpful for high-speed robot control. However a learned inverse kinodynamic model can only be applied to a limited class of control problems, and different control problems require the learning of a new IKD model. In this work we present a new formulation for accurate, high-speed robot control that makes use of a learned forward kinodynamic (FKD) model and non-linear least squares optimization. By nature of the formulation, this approach is extensible to a wide array of control problems without requiring the retraining of a new model. We demonstrate the ability of this approach to accurately control a scale one-tenth robot car at high speeds, and show improved results over baselines.
翻译:精确控制真实世界中的机器人需要一种能够考虑到机器人与其环境之间的运动动力相互作用的控制系统。 高速地,机器人运动对这些运动动力相互作用的依赖性更加明显, 使高速、 精确的机器人控制成为具有挑战性的问题。 先前的工作表明, 学习机器人反动动动能( IKD) 有助于高速机器人控制。 但是, 学习的反动动动能模型只能应用于有限的控制问题类别, 不同的控制问题需要学习新的 IKD 模型。 在这项工作中, 我们提出了一个精确、 高速机器人控制的新配方, 使用一个学过前动能( FKD) 模型和非线性最小正方形优化。 根据配方的性质, 这种方法在不需要再培训新模型的情况下, 可用于一系列广泛的控制问题。 我们展示了这种方法能够以高速度准确控制一台10级的机器人, 并显示在基线上取得更好的结果 。