In this work, we propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects and their spatial-semantic similarities, respectively. Specifically, we aim to consider relationships among objects for effectively contextualizing them. To achieve this, we first detect objects and then measure their semantic and spatial distances to construct an object graph, which is then represented by a graph neural network (GNN) for refining visual CNN features for objects. However, refining CNN features and detection results of every object are inefficient and may not be necessary, as that include correct predictions with low uncertainties. Therefore, we propose to handle uncertain objects by not only transferring the representation from certain objects (sources) to uncertain objects (targets) over the directed graph, but also improving CNN features only on objects regarded as uncertain with their representational outputs from the GNN. Furthermore, we calculate a training loss by giving larger weights on uncertain objects, to concentrate on improving uncertain object predictions while maintaining high performances on certain objects. We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet). We then experimentally validate ours on the challenging large-scale aerial image dataset, namely DOTA, that consists of lots of objects with small to large sizes in an image, on which ours improves the performance of the existing object detection network.


翻译:在这项工作中,我们提出了一个具有结构化图谱的新颖的有不确定性的物体探测框架,其中节点和边缘分别用物体及其空间-语义相似之处来表示。 具体地说, 我们的目标是考虑物体之间的关系, 以便有效地使其背景化。 为了实现这一目标, 我们首先检测物体, 然后测量其语义和空间距离, 以构建一个物体图, 该图随后以一个图形神经网络(GNN)为代表, 用于改进物体的视觉CNN特征。 然而, 改进CNN特性和每个物体的探测结果是无效的, 可能没有必要, 因为这包括精确的预测。 因此, 我们提议处理不确定的物体, 不仅将某些物体(来源) 的表示方式转移到方向图上不确定的物体( 目标), 而且还改进CNNC的功能, 仅针对那些被认为具有来自GNNNN的表示结果不确定性的物体。 此外, 我们计算培训损失的方法是, 对不确定的物体给予更大的重量, 专注于改进对象的预测, 同时保持某些物体的高度性能。 因此, 我们建议我们的模型是用于 DETetraction 大型探测的不确定物体的不确定物体的大规模图像, 。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员