The term dataset shift refers to the situation where the data used to train a machine learning model is different from where the model operates. While several types of shifts naturally occur, existing shift detectors are usually designed to address only a specific type of shift. We propose a simple yet powerful technique to ensemble complementary shift detectors, while tuning the significance level of each detector's statistical test to the dataset. This enables a more robust shift detection, capable of addressing all different types of shift, which is essential in real-life settings where the precise shift type is often unknown. This approach is validated by a large-scale statistically sound benchmark study over various synthetic shifts applied to real-world structured datasets.


翻译:数据集转换一词是指用于培训机器学习模型的数据与模型运行地点不同的情况。虽然有几种类型的转移自然发生,但现有的转移探测器通常只设计针对特定类型的转移。我们建议一种简单而有力的技术来混合互补的转移探测器,同时将每个探测器的统计测试的重要性调整到数据集。这样就可以进行更强有力的转移检测,能够处理所有不同类型的转移,这在精确的转移类型往往不为人所知的实际情况环境中是必不可少的。对于适用于真实世界结构数据集的各种合成转移进行大规模、统计上健全的基准研究证实了这一方法。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
65+阅读 · 2021年7月18日
【AAAI2021】协同挖掘:用于稀疏注释目标检测的自监督学习
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Semantically Coherent Out-of-Distribution Detection
Arxiv
0+阅读 · 2021年8月26日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员