Multimodal summarization (MS) aims to generate a summary from multimodal input. Previous works mainly focus on textual semantic coverage metrics such as ROUGE, which considers the visual content as supplemental data. Therefore, the summary is ineffective to cover the semantics of different modalities. This paper proposes a multi-task cross-modality learning framework (CISum) to improve multimodal semantic coverage by learning the cross-modality interaction in the multimodal article. To obtain the visual semantics, we translate images into visual descriptions based on the correlation with text content. Then, the visual description and text content are fused to generate the textual summary to capture the semantics of the multimodal content, and the most relevant image is selected as the visual summary. Furthermore, we design an automatic multimodal semantics coverage metric to evaluate the performance. Experimental results show that CISum outperforms baselines in multimodal semantics coverage metrics while maintaining the excellent performance of ROUGE and BLEU.
翻译:多式组合(MS)的目的是从多式联运投入中产生一个摘要。以前的工作主要侧重于文字语义覆盖度量,如ROUGE,认为视觉内容是补充性数据。因此,摘要无法有效涵盖不同模式的语义。本文件提出一个多任务跨模式学习框架(CISum),通过学习多式联运条款中的跨模式互动来改进多式联运语义覆盖。为了获得视觉语义学,我们根据与文字内容的相关性将图像转化为视觉描述。然后,视觉描述和文字内容被结合成文字摘要,以捕捉多式联运内容的语义,而最相关的图像被选为视觉摘要。此外,我们设计了一个自动的多式联运语义覆盖度衡量标准来评估绩效。实验结果表明,CISum在保持ROUGE和BLEU的出色性能的同时,超越了多式联运语义覆盖度的基线。