项目名称: 局域表面等离激元增强染料敏化太阳电池性能及机理研究

项目编号: No.51502056

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 于翠玲

作者单位: 哈尔滨工业大学

项目金额: 20万元

中文摘要: 拓宽染料敏化太阳电池吸收光谱范围、提高其光吸收利用效率,是提高电池功率转换效率的关键。本项目设计、合成系列核-壳结构等离激元纳米粒子,并应用于钴基电解质的染料敏化太阳电池光阳极。调控核-壳结构纳米粒子局域表面等离激元共振波长与染料敏化剂(YD2-OC8和C259)弱吸收光谱区域相匹配,利用其局域表面等离激元共振特性,提高染料敏化剂在其弱光吸收区的光吸收效率;研究核-壳结构纳米粒子对光阳极纳晶界面电荷分离和微尺度电荷输运的影响,揭示等离激元纳米粒子微观结构特征—局域表面等离激元共振特性—界面电荷分离与输运—器件性能之间的内在关联,并结合理论模拟计算,阐明局域表面等离激元增强染料敏化太阳电池光吸收和提高电池功率转换效率的机理,为进一步提高染料敏化太阳电池性能提供理论依据。

中文关键词: 染料敏化太阳电池;表面等离激元;纳米材料;电荷转移

英文摘要: Broadening absorption spectrum and increasing light-harvesting efficiency of dye-sensitized solar cells play a key role in enhancing power conversion efficiency of dye-sensitized solar cells. In this project, a series of core-shell structured plasmonic nanoparticles are designed and synthesized, and applied in the photoanodes of dye-sensitized solar cells with cobalt based electrolyte. The wavelength of surface plasmon resonance of core-shell structured nanoparticles is adjusted to match the low-absorption regions of photoabsorbers (YD2-OC8 and C259), and then the light-harvesting efficiency of dye-sensitized solar cells in the low-absorption regions can be enhanced via the localized surface plasmonic resonance. We will systematically investigate the influence of localized surface plasmon resonance characteristics of core-shell structured nanoparticles on interfacial charge separation on nanocrystals and microscale charge transport, and disclose the intrinsic relationship among microstructures of plasmonic nanoparticles, localized surface plasmon resonance characteristics, interfacial charge separation and charge transport as well as device performances. In combination with the theoretical simulation, the mechanism of localized surface plasmon enhanced light-absorption and power conversion efficiency of dye-sensitized solar cells is elucidated, which can provide a theoretical basis for further enhancing the performance of dye-sensitized solar cells.

英文关键词: dye-sensitized solar cells;surface plasmon;nanomaterilas;charge transfer

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
15+阅读 · 2020年8月21日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
你最讨厌哪个 App 功能?
ZEALER订阅号
1+阅读 · 2021年12月4日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
你最讨厌哪个 App 功能?
ZEALER订阅号
1+阅读 · 2021年12月4日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
微信扫码咨询专知VIP会员