Face recognition has achieved great success in the last five years due to the development of deep learning methods. However, deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples. In particular, the existence of transferable adversarial examples can severely hinder the robustness of DCNNs since this type of attacks can be applied in a fully black-box manner without queries on the target system. In this work, we first investigate the characteristics of transferable adversarial attacks in face recognition by showing the superiority of feature-level methods over label-level methods. Then, to further improve transferability of feature-level adversarial examples, we propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models and obtain ensemble-like effects. Extensive experiments on state-of-the-art face models with various training databases, loss functions and network architectures show that the proposed method can significantly enhance the transferability of existing attack methods. Finally, by applying DFANet to the LFW database, we generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries. This TALFW database is available to facilitate research on the robustness and defense of deep face recognition.


翻译:近五年来,由于深层次学习方法的发展,面对面的承认取得了巨大成功,然而,深层神经神经网络(DCNN)的深度演进很容易受到对抗性实例的影响,特别是,可转移的对抗性实例的存在会严重妨碍DCNN的稳健性,因为这种类型的攻击可以完全黑箱方式进行,而不必询问目标系统。在这项工作中,我们首先通过展示特征级方法优于标签级方法的可转移性来调查可转移的对抗性攻击的特征。然后,为了进一步提高地级对抗性实例的可转移性,我们建议DFANet,这是在同层中使用的一种基于辍学的方法,它可以增加代用模型的多样性,并获得同共性效果。在各种培训数据库、损失功能和网络结构中进行的关于状态式脸模型的广泛实验表明,拟议的方法可以大大提高现有攻击方法的可转移性。最后,通过将DFANet应用于LW数据库,我们制作了一套新的对抗性对面对面的对立式,可以成功地打击四套具有牢固的ALFA的防御性研究。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员