This paper concerns the research problem of point cloud registration to find the rigid transformation to optimally align the source point set with the target one. Learning robust point cloud registration models with deep neural networks has emerged as a powerful paradigm, offering promising performance in predicting the global geometric transformation for a pair of point sets. Existing methods firstly leverage an encoder to regress a latent shape embedding, which is then decoded into a shape-conditioned transformation via concatenation-based conditioning. However, different regions of a 3D shape vary in their geometric structures which makes it more sense that we have a region-conditioned transformation instead of the shape-conditioned one. In this paper we present a \underline{R}egion-\underline{A}ware point cloud \underline{R}egistration, denoted as RAR, to predict transformation for pairwise point sets in the self-supervised learning fashion. More specifically, we develop a novel region-aware decoder (RAD) module that is formed with an implicit neural region representation parameterized by neural networks. The implicit neural region representation is learned with a self-supervised 3D shape reconstruction loss without the need for region labels. Consequently, the region-aware decoder (RAD) module guides the training of the region-aware transformation (RAT) module and region-aware weight (RAW) module, which predict the transforms and weights for different regions respectively. The global geometric transformation from source point set to target one is then formed by the weighted fusion of region-aware transforms. Compared to the state-of-the-art approaches, our experiments show that our RAR achieves superior registration performance over various benchmark datasets (e.g. ModelNet40).


翻译:本文涉及点云注册的研究问题, 以找到僵硬的转化, 以优化匹配设定的源点。 学习强大的点云注册模型, 以及深神经网络, 已经成为一个强大的范例, 在预测一对点组的全球几何转换中提供了有希望的性能。 现有的方法首先利用一个编码器来回归一个隐形的嵌入, 然后通过基于连接的调试调节将它解译成一个形状固定的变换。 然而, 3D 形状的不同区域在它们的几何结构上各不相同, 这使我们更能理解我们有一个区域固定的变换, 而不是形状调整的神经网络。 在这个文件中, 我们展示了一种下线线线值的云值注册模型 。 因此, RAR 显示, 双向点的变换变模式 。 我们的区域内的变换变模式 由一个内隐含的内线区域表示值的变换码, 由一个内向区域变换的变换模型, 由一个内置的变压区域 的变换模型 。 因此, 将显示一个内部区域 的变换区域 的变, 的变式, 区域的变换模型 的变换模型需要一个自我的变换区域,, 的 区域 的 的 的 的 的 的 的 的 的 的 的 区域 的 的 的 区域 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 区域 的 的 的 的 的 的 的 的 的 区域 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

[CVPR 2021] 序列到序列对比学习的文本识别
专知会员服务
28+阅读 · 2021年4月14日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
69+阅读 · 2021年1月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
109+阅读 · 2020年3月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员