Point cloud registration for 3D objects is very challenging due to sparse and noisy measurements, incomplete observations and large transformations. In this work, we propose Graph Matching Consensus Network (GMCNet), which estimates pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud Registration (PPR). To encode robust point descriptors, 1) we first comprehensively investigate transformation-robustness and noiseresilience of various geometric features. 2) Then, we employ a novel Transformation-robust Point Transformer (TPT) modules to adaptively aggregate local features regarding the structural relations, which takes advantage from both handcrafted rotation-invariant ($RI$) features and noise-resilient spatial coordinates. 3) Based on a synergy of hierarchical graph networks and graphical modeling, we propose the Hierarchical Graphical Modeling (HGM) architecture to encode robust descriptors consisting of i) a unary term learned from $RI$ features; and ii) multiple smoothness terms encoded from neighboring point relations at different scales through our TPT modules. Moreover, we construct a challenging PPR dataset (MVP-RG) with virtual scans. Extensive experiments show that GMCNet outperforms previous state-of-the-art methods for PPR. Remarkably, GMCNet encodes point descriptors for each point cloud individually without using crosscontextual information, or ground truth correspondences for training. Our code and datasets will be available at https://github.com/paul007pl/GMCNet.
翻译:3D 对象的云点登记由于测量方法稀少和繁杂、观测不全和大规模变异,因此非常具有挑战性。在这项工作中,我们提议“图表匹配共识网络”(GMCNet),用于估算全程1号部分至部分点云登记(PPR)的成形式对应物。为了编码强势点描述符,1 我们首先全面调查各种几何特征的变压-紫外线和噪声反应性能。 2 然后,我们使用一个全新的变压点变压点变压点变压点变压点变压器模块,以适应性综合的地方结构关系特点,利用手动旋转点旋转点变换(RI$)的功能和静音回动空间坐标。 3 根据等级图形网络和图形建模的协同作用,我们提议“高压图形模型”架构,用于对强势的解动描述词,包括从$RIO值特性学的单词;以及从相邻点到我们的CN CN CN TRPL(RI$$$$$$) 的多个平流点关系解解解的多调词词词词,我们将在每次的GMRD-GMD-GMDS-GMDS-GMS-S-SDSDSAR 上,我们用每个的虚拟数据模拟的每个的校正压式的校正压前数据都展示式的校正,将用前数据都压式的校正法,用来显示法,用来展示式数据库-RVGMS-RV。