In a frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system, the acquisition of downlink channel state information (CSI) at base station (BS) is a very challenging task due to the overwhelming overheads required for downlink training and uplink feedback. In this paper, we reveal a deterministic uplink-to-downlink mapping function when the position-to-channel mapping is bijective. Motivated by the universal approximation theorem, we then propose a sparse complex-valued neural network (SCNet) to approximate the uplink-to-downlink mapping function. Different from general deep networks that operate in the real domain, the SCNet is constructed in the complex domain and is able to learn the complex-valued mapping function by off-line training. After training, the SCNet is used to directly predict the downlink CSI based on the estimated uplink CSI without the need of either downlink training or uplink feedback. Numerical results show that the SCNet achieves better performance than general deep networks in terms of prediction accuracy and exhibits remarkable robustness over complicated wireless channels, demonstrating its great potential for practical deployments.
翻译:在一个频度分解( DeFD) 大规模多投入多产出(MIMO) 系统中,在基地站获取下链接频道状态信息(CSI)是一项极具挑战性的任务,因为下链接培训和上链接反馈需要大量的间接费用。 在本文中,当位置到通道的映射是双向的时,我们揭示了一种确定性的上链接到下链接的映射功能。在通用近离理论的推动下,我们随后提议建立一个稀薄的复杂价值神经网络(SCNet),以近似上链接到下链接的映射功能。 与在实际领域运行的一般深网络不同,SCNet建于复杂的域域,能够通过离线培训学习复杂价值的映射功能。 在培训后,SCNet被用来直接预测基于估计的上链接 CSI的下链接,而不需要下链接培训或上链接反馈。 数字结果显示,SCNet在预测准确性和展示对复杂无线频道的巨大实际部署潜力方面比一般深网络取得更好的业绩。