Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its "wide" and "deep" components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its "deep" component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.


翻译:用户行为背后的精密学习特征互动对于最大限度地利用CTR为推荐者系统提供CTR至关重要。尽管取得了巨大进展,但现有方法对低或高端互动有着强烈的偏向,或者依赖专业特征工程。在本文中,我们表明有可能产生一个端到端学习模式,既强调低和高端特征互动。拟议的框架“深FM”结合了在新的神经网络结构中建议和深学习特征学习的乘数化机器的力量。与谷歌最新的宽深模型相比,深调(Deep FM)对于其“全域”和“深层”组成部分都有共同的原始特征投入,除了原始特征外不需要特征工程。深调(Deep FM)作为一个总体学习框架,可以将各种网络结构纳入其中的深层组成部分。在本文中,我们研究深调(Eep FM)的“深层”组成部分分别是DNNN和PNNN,对此我们作为深调(Deep FM-D)和深深深调-P。我们进行了全面实验,以展示深调-D和深调-P(Deep FM-P)对现有模型在现有的模型模型中的有效性,除了原始功能工程工程工程工程工程工程工程工程工程外,除了原始特征工程外,还可以工程工程工程工程工程工程工程工程工程工程工程工程工程外,在深度预测中比CFMD(在深调能测试中,在深调数据/FDFDB)数据测试中,在深度测试中,在深度测试中,在深度测试中,在深度测试中,在深度测试中,在深度测算算取10号中,在深压数据和深压下,在深度测试中,在深压中,在深压中,在深压中,在深度测试中,在深压-FMDFMD-FM-CFM-FM-CFM-FM-C-C-C-FM-B-B-BD-FM-la-la-la-la-la-la-la-la-la-rea-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-la-

6
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
初学者系列:Deep FM详解
专知
108+阅读 · 2019年8月26日
初学者系列:推荐系统Wide & Deep Learning详解
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
初学者系列:Deep FM详解
专知
108+阅读 · 2019年8月26日
初学者系列:推荐系统Wide & Deep Learning详解
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员